Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(4): pgae147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38638834

RESUMO

With continuing global warming and urbanization, it is increasingly important to understand the resilience of urban vegetation to extreme high temperatures, but few studies have examined urban vegetation at large scale or both concurrent and delayed responses. In this study, we performed an urban-rural comparison using the Enhanced Vegetation Index and months that exceed the historical 90th percentile in mean temperature (referred to as "hot months") across 85 major cities in the contiguous United States. We found that hot months initially enhanced vegetation greenness but could cause a decline afterwards, especially for persistent (≥4 months) and intense (≥+2 °C) episodes in summer. The urban responses were more positive than rural in the western United States or in winter, but more negative during spring-autumn in the eastern United States. The east-west difference can be attributed to the higher optimal growth temperatures and lower water stress levels of the western urban vegetation than the rural. The urban responses also had smaller magnitudes than the rural responses, especially in deciduous forest biomes, and least in evergreen forest biomes. Within each biome, analysis at 1 km pixel level showed that impervious fraction and vegetation cover, local urban heat island intensity, and water stress were the key drivers of urban-rural differences. These findings advance our understanding of how prolonged exposure to warm extremes, particularly within urban environments, affects vegetation greenness and vitality. Urban planners and ecosystem managers should prioritize the long and intense events and the key drivers in fostering urban vegetation resilience to heat waves.

2.
Sci Data ; 11(1): 339, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580669

RESUMO

Bridging molecular information to ecosystem-level processes would provide the capacity to understand system vulnerability and, potentially, a means for assessing ecosystem health. Here, we present an integrated dataset containing environmental and metagenomic information from plant-associated microbial communities, plant transcriptomics, plant and soil metabolomics, and soil chemistry and activity characterization measurements derived from the model tree species Populus trichocarpa. Soil, rhizosphere, root endosphere, and leaf samples were collected from 27 different P. trichocarpa genotypes grown in two different environments leading to an integrated dataset of 318 metagenomes, 98 plant transcriptomes, and 314 metabolomic profiles that are supported by diverse soil measurements. This expansive dataset will provide insights into causal linkages that relate genomic features and molecular level events to system-level properties and their environmental influences.


Assuntos
Metagenoma , Microbiota , Populus , Transcriptoma , Fungos/genética , Perfilação da Expressão Gênica , Genótipo , Populus/genética , Solo
3.
Glob Chang Biol ; 30(3): e17203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433341

RESUMO

Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long-term whole-ecosystem warming experiment at a boreal peatland to answer how temperature and CO2 jointly influence communities of abundant, diverse, yet poorly understood, non-fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high-throughput fluid imaging and 18S amplicon sequencing, we report large climate-induced, community-wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2 with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2 and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2 levels could alter the structure and function of peatland microbial food webs-a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation.


Assuntos
Dióxido de Carbono , Ecossistema , Humanos , Temperatura , Eucariotos , Carbono
4.
Artigo em Inglês | MEDLINE | ID: mdl-38052496

RESUMO

Carbon dioxide (CO2) is a major greenhouse gas contributing to changing climatic conditions, which is a grand challenge affecting the security of food, energy, and environment. Photosynthesis plays the central role in plant-based CO2 reduction. Plants performing CAM (crassulacean acid metabolism) photosynthesis have a much higher water use efficiency than those performing C3 or C4 photosynthesis. Therefore, there is a great potential for engineering CAM in C3 or C4 crops to enhance food/biomass production and carbon sequestration on arid, semiarid, abandoned, or marginal lands. Recent progresses in CAM plant genomics and evolution research, along with new advances in plant biotechnology, have provided a solid foundation for bioengineering to convert C3/C4 plants into CAM plants. Here, we first discuss the potential strategies for CAM engineering based on our current understanding of CAM evolution. Then we describe the technical approaches for engineering CAM in C3 and C4 plants, with a focus on an iterative four-step pipeline: (1) designing gene modules, (2) building the gene modules and transforming them into target plants, (3) testing the engineered plants through an integration of molecular biology, biochemistry, metabolism, and physiological approaches, and (4) learning to inform the next round of CAM engineering. Finally, we discuss the challenges and future opportunities for fully realizing the potential of CAM engineering.


Assuntos
Dióxido de Carbono , Metabolismo Ácido das Crassuláceas , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Produtos Agrícolas/genética , Biotecnologia
5.
Ecol Evol ; 13(9): e10542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37732286

RESUMO

Experimental warming of an ombrotrophic bog in northern Minnesota has caused a rapid decline in the productivity and areal cover of Sphagnum mosses, affecting whole-ecosystem carbon balance and biogeochemistry. Direct effects of elevated temperature and the attendant drying are most likely the primary cause of the effects on Sphagnum, but there may also be responses to the increased shading from shrubs, which increased with increasing temperature. To evaluate the independent effects of reduction in light availability and deposition of shrub litter on Sphagnum productivity, small plots with shrubs removed were laid out adjacent to the warming experiment on hummocks and hollows in three blocks and with five levels of shading. Four plots were covered with neutral density shade cloth to simulate shading from shrubs of 30%-90% reduction in light; one plot was left open. Growth of Sphagnum angustifolium/fallax and S. divinum declined linearly with increasing shade in hollows, but there was no response to shade on hummocks, where higher irradiance in the open plots may have been inhibitory. Shading caused etiolation of Sphagnum-they were thin and spindly under the deepest shade. A dense mat of shrub litter, corresponding to the amount of shrub litter produced in response to warming, did not inhibit Sphagnum growth or cause increases in potentially toxic base cations. CO2 exchange and chlorophyll-a fluorescence of S. angustifolium/fallax from the 30% and 90% shade cloth plots were measured in the laboratory. Light response curves indicate that maximal light saturated photosynthesis was 42% greater for S. angustifolium/fallax grown under 30% shade cloth relative to plants grown under 90% shade cloth. The response of Sphagnum growth in response to increasing shade is consistent with the hypothesis that increased shade resulting from shrub expansion in response to experimental warming contributed to reduced Sphagnum growth.

6.
Nucleic Acids Res ; 51(16): 8383-8401, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526283

RESUMO

Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.


Assuntos
Genes de Plantas , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Software , Transcriptoma/genética , Atlas como Assunto
7.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589594

RESUMO

MOTIVATION: Sphagnum-dominated peatlands store a substantial amount of terrestrial carbon. The genus is undersampled and under-studied. No experimental crystal structure from any Sphagnum species exists in the Protein Data Bank and fewer than 200 Sphagnum-related genes have structural models available in the AlphaFold Protein Structure Database. Tools and resources are needed to help bridge these gaps, and to enable the analysis of other structural proteomes now made possible by accurate structure prediction. RESULTS: We present the predicted structural proteome (25 134 primary transcripts) of Sphagnum divinum computed using AlphaFold, structural alignment results of all high-confidence models against an annotated nonredundant crystallographic database of over 90,000 structures, a structure-based classification of putative Enzyme Commission (EC) numbers across this proteome, and the computational method to perform this proteome-scale structure-based annotation. AVAILABILITY AND IMPLEMENTATION: All data and code are available in public repositories, detailed at https://github.com/BSDExabio/SAFA. The structural models of the S. divinum proteome have been deposited in the ModelArchive repository at https://modelarchive.org/doi/10.5452/ma-ornl-sphdiv.


Assuntos
Proteínas de Plantas , Proteoma , Sphagnopsida , Sphagnopsida/química , Sphagnopsida/enzimologia , Proteínas de Plantas/química , Fluxo de Trabalho , Homologia Estrutural de Proteína
8.
Ann Bot ; 132(3): 499-512, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37478307

RESUMO

BACKGROUND AND AIMS: New plant species can evolve through the reinforcement of reproductive isolation via local adaptation along habitat gradients. Peat mosses (Sphagnaceae) are an emerging model system for the study of evolutionary genomics and have well-documented niche differentiation among species. Recent molecular studies have demonstrated that the globally distributed species Sphagnum magellanicum is a complex of morphologically cryptic lineages that are phylogenetically and ecologically distinct. Here, we describe the architecture of genomic differentiation between two sister species in this complex known from eastern North America: the northern S. diabolicum and the largely southern S. magniae. METHODS: We sampled plant populations from across a latitudinal gradient in eastern North America and performed whole genome and restriction-site associated DNA sequencing. These sequencing data were then analyzed computationally. KEY RESULTS: Using sliding-window population genetic analyses we find that differentiation is concentrated within 'islands' of the genome spanning up to 400 kb that are characterized by elevated genetic divergence, suppressed recombination, reduced nucleotide diversity and increased rates of non-synonymous substitution. Sequence variants that are significantly associated with genetic structure and bioclimatic variables occur within genes that have functional enrichment for biological processes including abiotic stress response, photoperiodism and hormone-mediated signalling. Demographic modelling demonstrates that these two species diverged no more than 225 000 generations ago with secondary contact occurring where their ranges overlap. CONCLUSIONS: We suggest that this heterogeneity of genomic differentiation is a result of linked selection and reflects the role of local adaptation to contrasting climatic zones in driving speciation. This research provides insight into the process of speciation in a group of ecologically important plants and strengthens our predictive understanding of how plant populations will respond as Earth's climate rapidly changes.


Assuntos
Sphagnopsida , Sphagnopsida/genética , Especiação Genética , Evolução Biológica , Genômica , Análise de Sequência de DNA , Seleção Genética
9.
Plant Methods ; 19(1): 63, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386471

RESUMO

BACKGROUND: The role of beneficial microbes in mitigating plant abiotic stress has received considerable attention. However, the lack of a reproducible and relatively high-throughput screen for microbial contributions to plant thermotolerance has greatly limited progress in this area, this slows the discovery of novel beneficial isolates and the processes by which they operate. RESULTS: We designed a rapid phenotyping method to assess the effects of bacteria on plant host thermotolerance. After testing multiple growth conditions, a hydroponic system was selected and used to optimize an Arabidopsis heat shock regime and phenotypic evaluation. Arabidopsis seedlings germinated on a PTFE mesh disc were floated onto a 6-well plate containing liquid MS media, then subjected to heat shock at 45 °C for various duration. To characterize phenotype, plants were harvested after four days of recovery to measure chlorophyll content. The method was extended to include bacterial isolates and to quantify bacterial contributions to host plant thermotolerance. As an exemplar, the method was used to screen 25 strains of the plant growth promoting Variovorax spp. for enhanced plant thermotolerance. A follow-up study demonstrated the reproducibility of this assay and led to the discovery of a novel beneficial interaction. CONCLUSIONS: This method enables rapid screening of individual bacterial strains for beneficial effects on host plant thermotolerance. The throughput and reproducibility of the system is ideal for testing many genetic variants of Arabidopsis and bacterial strains.

10.
Glob Chang Biol ; 29(11): 3159-3176, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36999440

RESUMO

Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N2 -fixing (diazotrophic) and CH4 -oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of the Sphagnum phytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2 (+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4 , CO2 ) and nitrogen (NH4 -N) cycling from the belowground environment up to Sphagnum and its associated microbiome, we identified a series of cascading impacts to the Sphagnum phytobiome triggered by warming and elevated CO2 . Under ambient CO2 , warming increased plant-available NH4 -N in surface peat, excess N accumulated in Sphagnum tissue, and N2 fixation activity decreased. Elevated CO2 offset the effects of warming, disrupting the accumulation of N in peat and Sphagnum tissue. Methane concentrations in porewater increased with warming irrespective of CO2 treatment, resulting in a ~10× rise in methanotrophic activity within Sphagnum from the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane-induced N2 fixation and significant losses of keystone microbial taxa. In addition to changes in the Sphagnum microbiome, we observed ~94% mortality of Sphagnum between the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N-availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of the Sphagnum phytobiome to rising temperatures and atmospheric CO2 concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.


Assuntos
Microbiota , Sphagnopsida , Nitrogênio/análise , Fixação de Nitrogênio , Solo , Dióxido de Carbono , Oxirredução , Carbono , Microbiota/fisiologia , Metano
11.
Nat Plants ; 9(2): 238-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747050

RESUMO

Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.


Assuntos
Ecossistema , Sphagnopsida , Sequestro de Carbono , Sphagnopsida/fisiologia , Clima , Cromossomos Sexuais
12.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36828391

RESUMO

Climate change is affecting how energy and matter flow through ecosystems, thereby altering global carbon and nutrient cycles. Microorganisms play a fundamental role in carbon and nutrient cycling and are thus an integral link between ecosystems and climate. Here, we highlight a major black box hindering our ability to anticipate ecosystem climate responses: viral infections within complex microbial food webs. We show how understanding and predicting ecosystem responses to warming could be challenging-if not impossible-without accounting for the direct and indirect effects of viral infections on different microbes (bacteria, archaea, fungi, protists) that together perform diverse ecosystem functions. Importantly, understanding how rising temperatures associated with climate change influence viruses and virus-host dynamics is crucial to this task, yet is severely understudied. In this perspective, we (i) synthesize existing knowledge about virus-microbe-temperature interactions and (ii) identify important gaps to guide future investigations regarding how climate change might alter microbial food web effects on ecosystem functioning. To provide real-world context, we consider how these processes may operate in peatlands-globally significant carbon sinks that are threatened by climate change. We stress that understanding how warming affects biogeochemical cycles in any ecosystem hinges on disentangling complex interactions and temperature responses within microbial food webs.


Assuntos
Viroses , Vírus , Humanos , Ecossistema , Aquecimento Global , Mudança Climática , Carbono
13.
New Phytol ; 237(5): 1495-1504, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511294

RESUMO

Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.


Assuntos
Briófitas , Líquens , Ecossistema , Mudança Climática , Plantas , Briófitas/fisiologia , Líquens/fisiologia
14.
Microbiol Resour Announc ; 11(10): e0040022, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069554

RESUMO

We present 49 metagenome assemblies of the microbiome associated with Sphagnum (peat moss) collected from ambient, artificially warmed, and geothermally warmed conditions across Europe. These data will enable further research regarding the impact of climate change on plant-microbe symbiosis, ecology, and ecosystem functioning of northern peatland ecosystems.

15.
New Phytol ; 236(4): 1497-1511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971292

RESUMO

Sphagnum magellanicum is one of two Sphagnum species for which a reference-quality genome exists to facilitate research in ecological genomics. Phylogenetic and comparative genomic analyses were conducted based on resequencing data from 48 samples and RADseq analyses based on 187 samples. We report herein that there are four clades/species within the S. magellanicum complex in eastern North America and that the reference genome belongs to Sphagnum divinum. The species exhibit tens of thousands (RADseq) to millions (resequencing) of fixed nucleotide differences. Two species, however, referred to informally as S. diabolicum and S. magni because they have not been formally described, are differentiated by only 100 (RADseq) to 1000 (resequencing) of differences. Introgression among species in the complex is demonstrated using D-statistics and f4 ratios. One ecologically important functional trait, tissue decomposability, which underlies peat (carbon) accumulation, does not differ between segregates in the S. magellanicum complex, although previous research showed that many closely related Sphagnum species have evolved differences in decomposability/carbon sequestration. Phylogenetic resolution and more accurate species delimitation in the S. magellanicum complex substantially increase the value of this group for studying the early evolutionary stages of climate adaptation and ecological evolution more broadly.


Assuntos
Briófitas , Sphagnopsida , Sphagnopsida/genética , Filogenia , Ecossistema , Solo , Carbono , Nucleotídeos
16.
Hortic Res ; 9: uhac077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669710

RESUMO

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

17.
New Phytol ; 235(6): 2211-2222, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35524463

RESUMO

Trade-offs among carbon sinks constrain how trees physiologically, ecologically, and evolutionarily respond to their environments. These trade-offs typically fall along a productive growth to conservative, bet-hedging continuum. How nonstructural carbohydrates (NSCs) stored in living tree cells (known as carbon stores) fit in this trade-off framework is not well understood. We examined relationships between growth and storage using both within species genetic variation from a common garden, and across species phenotypic variation from a global database. We demonstrate that storage is actively accumulated, as part of a conservative, bet-hedging life history strategy. Storage accumulates at the expense of growth both within and across species. Within the species Populus trichocarpa, genetic trade-offs show that for each additional unit of wood area growth (in cm2 yr-1 ) that genotypes invest in, they lose 1.2 to 1.7 units (mg g-1 NSC) of storage. Across species, for each additional unit of area growth (in cm2 yr-1 ), trees, on average, reduce their storage by 9.5% in stems and 10.4% in roots. Our findings impact our understanding of basic plant biology, fit storage into a widely used growth-survival trade-off spectrum describing life history strategy, and challenges the assumptions of passive storage made in ecosystem models today.


Assuntos
Ecossistema , Características de História de Vida , Carboidratos , Carbono , Plantas , Árvores/fisiologia
18.
New Phytol ; 234(6): 2111-2125, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266150

RESUMO

Sphagnum peatmosses are fundamental members of peatland ecosystems, where they contribute to the uptake and long-term storage of atmospheric carbon. Warming threatens Sphagnum mosses and is known to alter the composition of their associated microbiome. Here, we use a microbiome transfer approach to test if microbiome thermal origin influences host plant thermotolerance. We leveraged an experimental whole-ecosystem warming study to collect field-grown Sphagnum, mechanically separate the associated microbiome and then transfer onto germ-free laboratory Sphagnum for temperature experiments. Host and microbiome dynamics were assessed with growth analysis, Chla fluorescence imaging, metagenomics, metatranscriptomics and 16S rDNA profiling. Microbiomes originating from warming field conditions imparted enhanced thermotolerance and growth recovery at elevated temperatures. Metagenome and metatranscriptome analyses revealed that warming altered microbial community structure in a manner that induced the plant heat shock response, especially the HSP70 family and jasmonic acid production. The heat shock response was induced even without warming treatment in the laboratory, suggesting that the warm-microbiome isolated from the field provided the host plant with thermal preconditioning. Our results demonstrate that microbes, which respond rapidly to temperature alterations, can play key roles in host plant growth response to rapidly changing environments.


Assuntos
Microbiota , Sphagnopsida , Carbono , Ecossistema , Metagenoma , Sphagnopsida/fisiologia , Temperatura
19.
ISME J ; 16(4): 1074-1085, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845335

RESUMO

Interactions between Sphagnum (peat moss) and cyanobacteria play critical roles in terrestrial carbon and nitrogen cycling processes. Knowledge of the metabolites exchanged, the physiological processes involved, and the environmental conditions allowing the formation of symbiosis is important for a better understanding of the mechanisms underlying these interactions. In this study, we used a cross-feeding approach with spatially resolved metabolite profiling and metatranscriptomics to characterize the symbiosis between Sphagnum and Nostoc cyanobacteria. A pH gradient study revealed that the Sphagnum-Nostoc symbiosis was driven by pH, with mutualism occurring only at low pH. Metabolic cross-feeding studies along with spatially resolved matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) identified trehalose as the main carbohydrate source released by Sphagnum, which were depleted by Nostoc along with sulfur-containing choline-O-sulfate, taurine and sulfoacetate. In exchange, Nostoc increased exudation of purines and amino acids. Metatranscriptome analysis indicated that Sphagnum host defense was downregulated when in direct contact with the Nostoc symbiont, but not as a result of chemical contact alone. The observations in this study elucidated environmental, metabolic, and physiological underpinnings of the widespread plant-cyanobacterial symbioses with important implications for predicting carbon and nitrogen cycling in peatland ecosystems as well as the basis of general host-microbe interactions.


Assuntos
Nostoc , Simbiose , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Nostoc/fisiologia
20.
Physiol Plant ; 173(3): 1008-1029, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34272872

RESUMO

Plant metabolic acclimation to thermal stress remains underrepresented in current global climate models. Gaps exist in our understanding of how metabolic processes (i.e., photosynthesis, respiration) acclimate over time and how aboveground versus belowground acclimation differs. We measured the thermal acclimation of Populus trichocarpa, comparing aboveground versus belowground physiology over time. Ninety genetically identical ramets were propagated in mesocosms that separated root and microbial components. After establishment at 25°C for 6 weeks, 60 clones were warmed +4 or +8°C and monitored for 10 weeks, measuring photosynthesis (A), leaf respiration (R), soil respiration (Rs ), root plus soil respiration (Rs+r ), and root respiration (Rr ). We observed thermal acclimation in both A and R, with rates initially increasing, then declining as the thermal photosynthetic optimum (Topt ) and the temperature-sensitivity (Q10 ) of respiration adjusted to warmer conditions. Photosynthetic acclimation was constructive, based on an increase in both Topt and peak A. Belowground, Rs+r decreased linearly with warming, while Rs rates declined abruptly, then remained constant with additional warming. Plant biomass was greatest at +4°C, with 30% allocated belowground. Rates of mass-based Rr were similar among treatments; however, root nitrogen declined at +8°C leading to less mass nitrogen-based Rr in that treatment. The Q10 -temperature relationship of Rr was affected by warming, leading to differing values among treatments. Aboveground acclimation exceeded belowground acclimation, and plant nitrogen-use mediated the acclimatory response. Results suggest that moderate climate warming (+4°C) may lead to acclimation and increased plant biomass production but increases in production could be limited with severe warming (+8°C).


Assuntos
Aclimatação , Aquecimento Global , Populus , Clima , Fotossíntese , Folhas de Planta , Populus/crescimento & desenvolvimento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA